4.8 Article

Embryonic gonadotropin-releasing hormone signaling is necessary for maturation of the male reproductive axis

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1000423107

Keywords

gonadotropin-releasing hormone neurons; gonadotropin-releasing hormone receptor; gonadotrope development; diphtheria toxin; Cre recombinase

Funding

  1. Deutsche Forschungsgemeinschaft [BO1743/2]

Ask authors/readers for more resources

Gonadotropin-releasing hormone (GnRH) signaling regulates reproductive physiology in mammals. GnRH is released by a subset of hypothalamic neurons and binds to GnRH receptor (GnRHR) on gonadotropes in the anterior pituitary gland to control production and secretion of gonadotropins that in turn regulate the activity of the gonads. Central control of reproduction is well understood in adult animals, but GnRH signaling has also been implicated in the development of the reproductive axis. To investigate the role of GnRH signaling during development, we selectively ablated GnRHR expressing cells in mice. This genetic strategy permitted us to identify an essential stage in male reproductive axis development, which depends on embryonic GnRH signaling. Our experiments revealed a striking dichotomy in the gonadotrope population of the fetal anterior pituitary gland. We show that luteinizing hormone-expressing gonadotropes, but not follicle-stimulating hormone-expressing gonadotropes, express the GnRHR at embryonic day 16.75. Furthermore, we demonstrate that an embryonic increase in luteinizing hormone secretion is needed to promote development of follicle-stimulating hormone-expressing gonadotropes, which might be mediated by paracrine interactions within the pituitary. Moreover, migration of GnRH neurons into the hypothalamus appeared normal with appropriate axonal connections to the median eminence, providing genetic evidence against autocrine regulation of GnRH neurons. Surprisingly, genetic ablation of GnRHR expressing cells significantly increased the number of GnRH neurons in the anterior hypothalamus, suggesting an unexpected role of GnRH signaling in establishing the size of the GnRH neuronal population. Our experiments define a functional role of embryonic GnRH signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available