4.8 Article

Physiological and pathological population dynamics of circulating human red blood cells

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1012747107

Keywords

hematology; mathematical modeling; medical sciences; stochastic differential equations; systems biology

Funding

  1. Harvard Medical School Research Information Technology Group
  2. National Institute of Diabetes and Digestive and Kidney Diseases [DK083242]
  3. National Heart, Lung, and Blood Institute [HL091331]

Ask authors/readers for more resources

The systems controlling the number, size, and hemoglobin concentrations of populations of human red blood cells (RBCs), and their dysregulation in anemia, are poorly understood. After release from the bone marrow, RBCs undergo reduction in both volume and total hemoglobin content by an unknown mechanism [Lew VL, et al. (1995) Blood 86:334-341; Waugh RE, et al. (1992) Blood 79:1351-1358]; after similar to 120 d, responding to an unknown trigger, they are removed. We used theory from statistical physics and data from the hospital clinical laboratory [d'Onofrio G, et al. (1995) Blood 85:818-823] to develop a master equation model for RBC maturation and clearance. The model accurately identifies patients with anemia and distinguishes thalassemia-trait anemia from iron-deficiency anemia. Strikingly, it also identifies many pre-anemic patients several weeks before anemia becomes clinically detectable. More generally we illustrate how clinical laboratory data can be used to develop and to test a dynamic model of human pathophysiology with potential clinical utility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available