4.8 Article

Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912839107

Keywords

cyclic di-GMP; diffusible signal factor; plant pathogenesis; signal transduction

Funding

  1. Science Foundation of Ireland and Enterprise Ireland
  2. Human Frontiers Science Programme
  3. European Molecular Biology Organization
  4. Biotechnology and Biological Sciences Research Council

Ask authors/readers for more resources

RpfG is a paradigm for a class of widespread bacterial two-component regulators with a CheY-like receiver domain attached to a histidine-aspartic acid-glycine-tyrosine-proline (HD-GYP) cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris pv. campestris (Xcc), a two-component system comprising RpfG and the complex sensor kinase RpfC is implicated in sensing and responding to the diffusible signaling factor (DSF), which is essential for cell-cell signaling. RpfF is involved in synthesizing DSF, and mutations of rpfF, rpfG, or rpfC lead to a coordinate reduction in the synthesis of virulence factors such as extracellular enzymes, biofilm structure, and motility. Using yeast two-hybrid analysis and fluorescence resonance energy transfer experiments in Xcc, we show that the physical interaction of RpfG with two proteins with diguanylate cyclase (GGDEF) domains controls a subset of RpfG-regulated virulence functions. RpfG interactions were abolished by alanine substitutions of the three residues of the conserved GYP motif in the HD-GYP domain. Changing the GYP motif or deletion of the two GGDEF-domain proteins reduced Xcc motility but not the synthesis of extracellular enzymes or biofilm formation. RpfG-GGDEF interactions are dynamic and depend on DSF signaling, being reduced in the rpfF mutant but restored by DSF addition. The results are consistent with a model in which DSF signal transduction controlling motility depends on a highly regulated, dynamic interaction of proteins that influence the localized expression of cyclic di-GMP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available