4.8 Article

Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1002443107

Keywords

chronic mountain sickness; high altitude; human genome variation; hypoxia; hypoxia-inducible factor

Funding

  1. National Science Foundation
  2. National Institutes of Health National Center for Research Resources, National Institute of General Medical Sciences, National Cancer Institute, National Heart, Lung, and Blood Institute
  3. National Natural Science Foundation of China [30890031]
  4. Ministry of Science and Technology [2006DFA31850]
  5. Chinese Academy of Sciences [KSCX2-YW-R-76]
  6. Science and Technology Plan of the Tibet Autonomous Region [2007-2-18]
  7. Royal Society
  8. Medical Research Council [G0600698B] Funding Source: researchfish

Ask authors/readers for more resources

By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200 3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2 alpha, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available