4.8 Article

Real-time single-cell response to stiffness

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1007940107

Keywords

cell mechanics; mechanotransduction; dynamic stiffness control

Funding

  1. Ministere de la Recherche
  2. Centre National de la Recherche Scientifique
  3. Paris-Diderot (Paris 7) University
  4. Association pour la Recherche sur le Cancer

Ask authors/readers for more resources

Living cells adapt to the stiffness of their environment. However, cell response to stiffness is mainly thought to be initiated by the deformation of adhesion complexes under applied force. In order to determine whether cell response was triggered by stiffness or force, we have developed a unique method allowing us to tune, in real time, the effective stiffness experienced by a single living cell in a uniaxial traction geometry. In these conditions, the rate of traction force buildup dF/dt was adapted to stiffness in less than 0.1 s. This integrated fast response was unambiguously triggered by stiffness, and not by force. It suggests that early cell response could be mechanical in nature. In fact, local force-dependent signaling through adhesion complexes could be triggered and coordinated by the instantaneous cell-scale adaptation of dF/dt to stiffness. Remarkably, the effective stiffness method presented here can be implemented on any mechanical setup. Thus, beyond single-cell mechanosensing, this method should be useful to determine the role of rigidity in many fundamental phenomena such as morphogenesis and development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available