4.8 Article

An atomistic picture of the regeneration process in dye sensitized solar cells

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0913277107

Keywords

density functional theory; molecular dynamics simulations; photovoltaics; solid/liquid interfaces; statistical mechanics

Funding

  1. Swiss National Science Foundation [200020-111895]
  2. Swiss National Supercomputer Center for computer resources

Ask authors/readers for more resources

A highly efficient mechanism for the regeneration of the cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) sensitizing dye (N3) by I- in acetonitrile has been identified by using molecular dynamics simulation based on density functional theory. Barrier-free complex formation of the oxidized dye with both I- and I-2(-), and facile dissociation of I-2(-) and I-3(-) from the reduced dye are key steps in this process. In situ vibrational spectroscopy confirms the reversible binding of I-2 to the thiocyanate group. Additionally, simulations of the electrolyte near the interface suggest that acetonitrile is able to cover the (101) surface of anatase with a passivating layer that inhibits direct contact of the redox mediator with the oxide, and that the solvent structure specifically enhances the concentration of I- at a distance which further favors rapid dye regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available