4.8 Article

Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1007025107

Keywords

contraction; cytokinesis; macromolecular assembly

Funding

  1. National Institutes of Health [GM068032]

Ask authors/readers for more resources

Contractile force transduction by myosin II derives from its assembly into bipolar filaments. The coiled-coil tail domain of the myosin II heavy chain mediates filament assembly, although the mechanism is poorly understood. Tail domains contain an alternating electrostatic repeat, yet only a small region of the tail (termed the assembly domain) is typically required for assembly. Using computational analysis, mutagenesis, and electron microscopy we discovered that the assembly domain does not function through self-interaction as previously thought. Rather, the assembly domain acts as a unique, positively charged interaction surface that can stably contact multiple complementary, negatively charged surfaces in the upstream tail domain. The relative affinities of the assembly domain to each complementary interaction surface sets the characteristic molecular staggers observed in myosin II filaments. Together these results explain the relationship between the charge repeat and assembly domain in stabilizing myosin bipolar filaments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available