4.8 Article

Tunable recognition of the steroid α-face by adjacent π-electron density

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0915142107

Keywords

steroids; molecular recognition; mechanosynthesis; crystal structure prediction

Funding

  1. Herchel Smith fund
  2. Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom [EP/E016340]
  3. EPSRC [EP/E016340/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/E016340/1] Funding Source: researchfish

Ask authors/readers for more resources

We report a previously unknown recognition motif between the alpha-face of the steroid hydrocarbon backbone and pi-electron-rich aromatic substrates. Our study is based on a systematic and comparative analysis of the solid-state complexation of four steroids with 24 aromatic molecules. By using the solid state as a medium for complexation, we circumvent solubility and solvent competition problems that are inherent to the liquid phase. Characterization is performed using powder and single crystal X-ray diffraction, infrared solid-state spectroscopy and is complemented by a comprehensive cocrystal structure prediction methodology that surpasses earlier computational approaches in terms of realism and complexity. Our combined experimental and theoretical approach reveals that the alpha...pi stacking is of electrostatic origin and is highly dependent on the steroid backbone's unsaturated and conjugated character. We demonstrate that the alpha...pi stacking interaction can drive the assembly of molecules, in particular progesterone, into solid-state complexes without the need for additional strong interactions. It results in a marked difference in the solid-state complexation propensities of different steroids with aromatic molecules, suggesting a strong dependence of the steroid-binding affinity and even physicochemical properties on the steroid's A-ring structure. Hence, the hydrocarbon part of the steroid is a potentially important variable in structure-activity relationships for establishing the binding and signaling properties of steroids, and in the manufacture of pharmaceutical cocrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available