4.8 Article

Rotational and constitutional dynamics of caged supramolecules

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1008991107

Keywords

supramolecular dynamics; nanochemistry; surface architecture

Funding

  1. International Graduate School of Science and Engineering and Institute of Advanced Study at Technische Universitat Munchen, European Research Council [o247299]

Ask authors/readers for more resources

The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules' chirality signature, reflecting decay and reassembly of the caged units.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available