4.8 Article

Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0914168107

Keywords

selective autophagy; cell spreading; Drosophila; hemocyte; macrophage

Funding

  1. National Institutes of Health [P30 NS047101]
  2. Human Frontier Science Program
  3. David & Lucille Packard Foundation
  4. NIH LIPID MAPs consortium [GM069338]
  5. NIH/NCI [T32 CA009523]

Ask authors/readers for more resources

Dynamic regulation of cell shape underlies many developmental and immune functions. Cortical remodeling is achieved under the central control of Rho GTPase pathways that modulate an exquisite balance in the dynamic assembly and disassembly of the cytoskeleton and focal adhesions. Macroautophagy (autophagy), associated with bulk cytoplasmic remodeling through lysosomal degradation, has clearly defined roles in cell survival and death. Moreover, it is becoming apparent that proteins, organelles, and pathogens can be targeted for autophagic clearance by selective mechanisms, although the extent and roles of such degradation are unclear. Here we report a conserved role for autophagy specifically in the cortical remodeling of Drosophila blood cells (hemocytes) and mouse macrophages. Continuous autophagy was required for integrin-mediated hemocyte spreading and Rho1-induced cell protrusions. Consequently, hemocytes disrupted for autophagy were impaired in their recruitment to epidermal wounds. Cell spreading required ref(2)P, the Drosophila p62 multiadaptor, implicating selective autophagy as a novel mechanism for modulating cortical dynamics. These results illuminate a specific and conserved role for autophagy as a regulatory mechanism for cortical remodeling, with implications for immune cell function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available