4.8 Article

Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0904764106

Keywords

fluorescent indicator; FRET; live imaging; oxidative phosphorylation

Funding

  1. Grant-in-Aid for Scientific Research [18074005, 18201025]
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. Japan Science and Technology Agency
  4. Grants-in-Aid for Scientific Research [18201025] Funding Source: KAKEN

Ask authors/readers for more resources

Adenosine 5'-triphosphate (ATP) is the major energy currency of cells and is involved in many cellular processes. However, there is no method for real-time monitoring of ATP levels inside individual living cells. To visualize ATP levels, we generated a series of fluorescence resonance energy transfer (FRET)-based indicators for ATP that were composed of the epsilon subunit of the bacterial F(o)F(1)-ATP synthase sandwiched by the cyan- and yellow-fluorescent proteins. The indicators, named ATeams, had apparent dissociation constants for ATP ranging from 7.4 mu M to 3.3 mM. By targeting ATeams to different subcellular compartments, we unexpectedly found that ATP levels in the mitochondrial matrix of HeLa cells are significantly lower than those of cytoplasm and nucleus. We also succeeded in measuring changes in the ATP level inside single HeLa cells after treatment with inhibitors of glycolysis and/or oxidative phosphorylation, revealing that glycolysis is the major ATP-generating pathway of the cells grown in glucose-rich medium. This was also confirmed by an experiment using oligomycin A, an inhibitor of F(o)F(1)-ATP synthase. In addition, it was demonstrated that HeLa cells change ATP-generating pathway in response to changes of nutrition in the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available