4.8 Article

Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0901471106

Keywords

iPS cells; nonintegrative technique; reprogramming; pluripotency

Funding

  1. Swiss National Science Foundation
  2. Ramon y Cajal program
  3. Juan de La Cierva program
  4. G. Harold and Leila Y. Mathers Charitable Foundation, Marato, Terapia Celular
  5. Fundacion Cellex

Ask authors/readers for more resources

Induced pluripotent stem (iPS) cells have generated keen interest due to their potential use in regenerative medicine. They have been obtained from various cell types of both mice and humans by exogenous delivery of different combinations of Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28. The delivery of these transcription factors has mostly entailed the use of integrating viral vectors ( retroviruses or lentiviruses), carrying the risk of both insertional mutagenesis and oncogenesis due to misexpression of these exogenous factors. Therefore, obtaining iPS cells that do not carry integrated transgene sequences is an important prerequisite for their eventual therapeutic use. Here we report the generation of iPS cell lines from mouse embryonic fibroblasts with no evidence of integration of the reprogramming vector in their genome, achieved by nucleofection of a polycistronic construct coexpressing Oct4, Sox2, Klf4, and c-Myc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available