4.8 Article

Lipocalin 2 promotes breast cancer progression

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0810617106

Keywords

epithelial to mesenchymal transition; biomarker; estrogen receptor

Funding

  1. NCI NIH HHS [R01 CA118764, CA 118732-01A1, K01 CA118732] Funding Source: Medline

Ask authors/readers for more resources

Here, we report that lipocalin 2 (Lcn2) promotes breast cancer progression, and we identify the mechanisms underlying this function. We first found that Lcn2 levels were consistently associated with invasive breast cancer in human tissue and urine samples. To investigate the function of Lcn2 in breast cancer progression, Lcn2 was overexpressed in human breast cancer cells and was found to up-regulate mesenchymal markers, including vimentin and fibronectin, down-regulate the epithelial marker E-cadherin, and significantly increase cell motility and invasiveness. These changes in marker expression and cell motility are hallmarks of an epithelial to mesenchymal transition (EMT). In contrast, Lcn2 silencing in aggressive breast cancer cells inhibited cell migration and the mesenchymal phenotype. Furthermore, reduced expression of estrogen receptor (ER) alpha and increased expression of the key EMT transcription factor Slug were observed with Lcn2 expression. Overexpression of ER alpha in Lcn2-expressing cells reversed the EMT and reduced Slug expression, suggesting that ER alpha negatively regulates Lcn2-induced EMT. Finally, orthotopic studies demonstrated that Lcn2-expressing breast tumors displayed a poorly differentiated phenotype and showed increased local tumor invasion and lymph node metastasis. Taken together, these in vitro, in vivo, and human studies demonstrate that Lcn2 promotes breast cancer progression by inducing EMT through the ER alpha/Slug axis and may be a useful biomarker of breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available