4.8 Article

Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0900877106

Keywords

aerosol; ferrets; contact; pandemic; preparedness

Funding

  1. Control and Prevention Health and Human Services [1U01CI000355]
  2. National Institute of Allergy and Infectious Diseases-National Institutes of Health [R01AI052155]
  3. Cooperative State Research, Education, and Extension Services -U.S. Department of Agriculture [2005-05523]
  4. NIAID-NIH [HHSN266200700010C]

Ask authors/readers for more resources

Pandemic influenza requires interspecies transmission of an influenza virus with a novel hemagglutinin (HA) subtytpe that can adapt to its new host through either reassortment or point mutations and transmit by aerosolized respiratory droplets. Two previous pandemics of 1957 and 1968 resulted from the reassortment of low pathogenic avian viruses and human subtypes of that period; however, conditions leading to a pandemic virus are still poorly understood. Given the endemic situation of avian H9N2 influenza with human-like receptor specificity in Eurasia and its occasional transmission to humans and pigs, we wanted to determine whether an avian-human H9N2 reassortant could gain respiratory transmission in a mammalian animal model, the ferret. Here we show that following adaptation in the ferret, a reassortant virus carrying the surface proteins of an avian H9N2 in a human H3N2 backbone can transmit efficiently via respiratory droplets, creating a clinical infection similar to human influenza infections. Minimal changes at the protein level were found in this virus capable of respiratory droplet transmission. A reassortant virus expressing only the HA and neuraminidase (NA) of the ferret-adapted virus was able to account for the transmissibility, suggesting that currently circulating avian H9N2 viruses require little adaptation in mammals following acquisition of all human virus internal genes through reassortment. Hemagglutinin inhibition (HI) analysis showed changes in the antigenic profile of the virus, which carries profound implications for vaccine seed stock preparation against avian H9N2 influenza. This report illustrates that aerosolized respiratory transmission is not exclusive to current human H1, H2, and H3 influenza subtypes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available