4.8 Article

Ubiquitous internal gene duplication and intron creation in eukaryotes

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0911093106

Keywords

exons; genome evolution; intron evolution; splice site

Funding

  1. National Institutes of Health Postdoctoral Fellowship [F32GM083550]
  2. National Science Foundation [EF-0827411]

Ask authors/readers for more resources

Duplication of genomic segments provides a primary resource for the origin of evolutionary novelties. However, most previous studies have focused on duplications of complete protein-coding genes, whereas little is known about the significance of duplication segments that are entirely internal to genes. Our examination of six fully sequenced genomes reveals that internal duplications of gene segments occur at a high frequency (0.001-0.013 duplications/gene per million years), similar to that of complete gene duplications, such that 8-17% of the genes in a genome carry duplicated intronic and/or exonic regions. At least 7-30% of such genes have acquired novel introns, either because a prior intron in the same gene has been duplicated, or more commonly, because a spatial change has activated a latent splice site. These results strongly suggest a major evolutionary role for internal gene duplications in the origin of genomic novelties, particularly as a mechanism for intron gain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available