4.8 Article

β-arrestin- but not G protein-mediated signaling by the decoy receptor CXCR7

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912852107

Keywords

biased receptor; chemokine; G protein-coupled receptors; seven-transmembrane receptor

Funding

  1. National Institutes of Health (NIH) [HL16037, HL70631, HL69511, 36162]
  2. NIH T32 training [HL07101-34]

Ask authors/readers for more resources

Ubiquitously expressed seven-transmembrane receptors (7TMRs) classically signal through heterotrimeric G proteins and are commonly referred to as G protein-coupled receptors. It is now recognized that 7TMRs also signal through beta-arrestins, which act as versatile adapters controlling receptor signaling, desensitization, and trafficking. Most endogenous receptors appear to signal in a balanced fashion using both beta-arrestin and G protein-mediated pathways. Some 7TMRs are thought to be nonsignaling decoys because of their inability to activate typical G protein signaling pathways; it has been proposed that these receptors act to scavenge ligands or function as coreceptors. Here we demonstrate that ligand binding to the decoy receptor CXCR7 does not result in activation of signaling pathways typical of G proteins but does activate MAP kinases through beta-arrestins in transiently transfected cells. Furthermore, we observe that vascular smooth muscle cells that endogenously express CXCR7 migrate to its ligand interferon-inducible T-cell alpha chemoattractant (ITAC), an effect that is significantly attenuated by treatment with either a CXCR7 antagonist or beta-arrestin depletion by siRNA. This example of an endogenous beta-arrestin-biased 7TMR that signals through beta-arrestin in the absence of G protein activation demonstrates that some 7TMRs encoded in the genome have evolved to signal through beta-arrestin exclusively and suggests that other receptors that are currently thought to be orphans or decoys may also signal through such nonclassical pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available