4.8 Article

Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0901477106

Keywords

appressorium; fungus; plant pathogen

Funding

  1. BBSRC [BB/E022677/1] Funding Source: UKRI
  2. Biotechnology and Biological Sciences Research Council [BB/E022677/1] Funding Source: researchfish
  3. Biotechnology and Biological Sciences Research Council [BB/E022677/1] Funding Source: Medline

Ask authors/readers for more resources

To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted deletion mutants demonstrated that loss of any of the 16 genes necessary for nonselective macroautophagy renders the fungus unable to cause rice blast disease, due to impairment of both conidial programmed cell death and appressorium maturation. In contrast, genes necessary only for selective forms of autophagy, such as pexophagy and mitophagy, are dispensable for appressorium-mediated plant infection. A genome-wide analysis therefore demonstrates the importance of infection-associated, nonselective autophagy for the establishment of rice blast disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available