4.8 Article

Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0901290106

Keywords

G-protein coupled receptor; GPCR; imaging; glutamate sensor; dimer

Funding

  1. Medical Research Council Career Development Award
  2. Royal Society
  3. RIKEN
  4. Royal Society University Research
  5. MRC [G0600064] Funding Source: UKRI
  6. Medical Research Council [G0600064] Funding Source: researchfish

Ask authors/readers for more resources

Metabotropic glutamate receptor (mGluR) activation has been extensively studied under steady-state conditions. However, at central synapses, mGluRs are exposed to brief submillisecond glutamate transients and may not reach steady-state. The lack of information on the kinetics of mGluR activation impairs accurate predictions of their operation during synaptic transmission. Here, we report experiments designed to investigate mGluR kinetics in real-time. We inserted either CFP or YFP into the second intracellular loop of mGluR1 beta. When these constructs were coexpressed in PC12 cells, glutamate application induced a conformational change that could be monitored, using fluorescence resonance energy transfer (FRET), with an EC(50) of 7.5 mu M. The FRET response was mimicked by the agonist DHPG, abolished by the competitive antagonist MCPG, and partially inhibited by mGluR1-selective allosteric modulators. These results suggest that the FRET response reports active conformations of mGluR1 dimers. The solution exchange at the cell membrane was optimized for voltage-clamped cells by recording the current induced by co-application of 30 mM potassium. When glutamate was applied at increasing concentrations up to 2 mM, the activation time course decreased to a minimum of approximately 10 ms, whereas the deactivation time course remained constant (similar to 50 ms). During long-lasting applications, no desensitization was observed. In contrast, we observed a robust sensitization of the FRET response that developed over approximately 400 ms. Activation, deactivation, and sensitization time courses and amplitudes were used to derive a kinetic scheme and rate constants, from which we inferred the EC50 and frequency dependence of mGluR1 activation under non-steady-state conditions, as occurs during synaptic transmission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available