4.8 Article

Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0903676106

Keywords

brain-derived neurotrophic factor activation; calcium signaling pathway; calcium/calmodulin-dependent kinase II; neuronal maturation; GPCR oligomerization

Funding

  1. National Institute of Drug Abuse

Ask authors/readers for more resources

Although the perturbation of either the dopaminergic system or brain-derived neurotrophic factor (BDNF) levels has been linked to important neurological and neuropsychiatric disorders, there is no known signaling pathway linking these two major players. We found that the exclusive stimulation of the dopamine D1-D2 receptor heteromer, which we identified in striatal neurons and adult rat brain by using confocal FRET, led to the activation of a signaling cascade that links dopamine signaling to BDNF production and neuronal growth through a cascade of four steps: (i) mobilization of intracellular calcium through Gq, phospholipase C, and inositol trisphosphate, (ii) rapid activation of cytosolic and nuclear calcium/calmodulin-dependent kinase II alpha, (iii) increased BDNF expression, and (iv) accelerated morphological maturation and differentiation of striatal neurons, marked by increased microtubule-associated protein 2 production. These effects, although robust in striatal neurons from D5(-/-) mice, were absent in neurons from D1(-/-) mice. We also demonstrated that this signaling cascade was activated in adult rat brain, although with regional specificity, being largely limited to the nucleus accumbens. This dopaminergic pathway regulating neuronal growth and maturation through BDNF may have considerable significance in disorders such as drug addiction, schizophrenia, and depression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available