4.8 Article

Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0903144106

Keywords

abscisic acid; seed germination; SnRK2; stomatal regulation

Funding

  1. National Institutes of Health [R01GM59138]

Ask authors/readers for more resources

Abscisic acid (ABA) is an important phytohormone regulating seed dormancy, germination, seedling growth, and plant transpiration. We report here an Arabidopsis triple mutant that is disrupted in 3 SNF1-related protein kinase subfamily 2 (SnRK2s) and nearly completely insensitive to ABA. These SnRK2s, SnRK2.2, SnRK2.3, and SnRK2.6 (also known as OST1), are activated by ABA and can phosphorylate the ABA-responsive element binding factor family of b-ZIP transcription factors, which are important for the activation of ABA-responsive genes. Although stomatal regulation of snrk2.6 and seed germination and seedling growth of the snrk2.2/2.3 double mutant are insensitive to ABA, ABA responses are still present in these mutants, and the growth and reproduction of these mutants are not very different from those of the WT. In contrast, the snrk2.2/2.3/2.6 triple mutant grows poorly and produces few seeds. The triple mutant plants lose water extremely fast when ambient humidity is not high. Even on 50 mu M ABA, the triple mutant can germinate and grow, whereas the most insensitive known mutants cannot develop on 10 mu M ABA. In-gel kinase assays showed that all ABA-activated protein kinase activities are eliminated in the triple mutant. Also, the expression of ABA-induced genes examined is completely blocked in the triple mutant. These results demonstrate that the protein kinases SnRK2.2, SnRK2.3, and SnRK2.6 have redundant functions, and suggest that ABA signaling is critical for plant growth and reproduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available