4.8 Article

Cell type-dependent proapoptotic role of Bcl2L12 revealed by a mutation concomitant with the disruption of the juxtaposed Irf3 gene

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0905702106

Keywords

apoptosis; Golgi; innate immunity; mitochondria

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan

Ask authors/readers for more resources

The generation of mice lacking the expression of the IRF3 transcription factor (Irf3(-/-) mice) has revealed its crucial role in the activation of the type I IFN response. The Bcl2l12 gene, encoding Bcl2L12 protein structurally related to the Bcl-2 family, was found to almost overlap with the Irf3 gene, and the null mutation previously introduced into the Irf3 allele resulted in the functional inactivation of the Bcl2l12 gene; therefore, the mice are correctly termed Irf3(-/-) Bcl2l12(-/-) mice. Embryonic fibroblasts from Irf3(-/-)Bcl2l12(-/-) mice (Irf3(-/-)Bcl2l12(-/-) MEFs) showed resistance to DNA damage-induced apoptosis, accompanied by impaired caspase cleavage. This apoptotic defect in Irf3(-/-) Bcl2l12(-/-) MEFs was rescued by the ectopic expression of Bcl2L12, but not IRF3. The Bcl2L12-mediated apoptotic response depended on the cell type and extracellular stimulus. In contrast, the previously reported defect in the induction of type I IFN genes by nucleic acids in Irf3(-/-)Bcl2l12(-/-) MEFs was rescued by expressing IRF3, but not Bcl2L12. Thus, our present study revealed, on the one hand, a cell type-dependent proapoptotic function of Bcl2L12 and, on the other hand, confirmed the essential role of IRF3 in type I IFN response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available