4.8 Article

ATP-dependent mechanics of red blood cells

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0904614106

Keywords

erythrocyte; membrane fluctuations; nonequilibrium; optical tweezer; spectrin

Funding

  1. Human Frontier Science Program
  2. French Agence Nationale de la Recherche-Physique et Chimie du Vivant
  3. Postdoc Program of the German Academic Exchange Service (DAAD)
  4. European Molecular Biology Organization (EMBO)

Ask authors/readers for more resources

Red blood cells are amazingly deformable structures able to recover their initial shape even after large deformations as when passing through tight blood capillaries. The reason for this exceptional property is found in the composition of the membrane and the membrane-cytoskeleton interaction. We investigate the mechanics and the dynamics of RBCs by a unique noninvasive technique, using weak optical tweezers to measure membrane fluctuation amplitudes with mu s temporal and sub nm spatial resolution. This enhanced edge detection method allows to span over >4 orders of magnitude in frequency. Hence, we can simultaneously measure red blood cell membrane mechanical properties such as bending modulus kappa = 2.8 +/- 0.3 x 10(-19)J = 67.6 +/- 7.2 k(B)T, tension sigma = 6.5 +/- 2.1 x 10(-7)N/m, and an effective viscosity eta(eff) = 81 +/- 3.7 x 10(-3) Pa s that suggests unknown dissipative processes. We furthermore show that cell mechanics highly depends on the membrane-spectrin interaction mediated by the phosphorylation of the interconnection protein 4.1R. Inhibition and activation of this phosphorylation significantly affects tension and effective viscosity. Our results show that on short time scales (slower than 100 ms) the membrane fluctuates as in thermodynamic equilibrium. At time scales longer than 100 ms, the equilibrium description breaks down and fluctuation amplitudes are higher by 40% than predicted by the membrane equilibrium theory. Possible explanations for this discrepancy are influences of the spectrin that is not included in the membrane theory or nonequilibrium fluctuations that can be accounted for by defining a nonthermal effective energy of up to E-eff = 1.4 +/- 0.1 kBT, that corresponds to an actively increased effective temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available