4.8 Article

Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0806270105

Keywords

Alzheimer's disease; electron microscopy; solid state NMR; amyloid structure; protein misfolding

Funding

  1. Intramural Research Programs of the National Institute of Diabetes and Digestive and Kidney Diseases
  2. National Institute of Biomedical Imaging and Bioengineering

Ask authors/readers for more resources

We describe a full structural model for amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (A beta(1-40)), based on numerous constraints from solid state NMR and electron microscopy. This model applies specifically to fibrils with a periodically twisted morphology, with twist period equal to 120 +/- 20 nm (defined as the distance between apparent minima in fibril width in negatively stained transmission electron microscope images). The structure has threefold symmetry about the fibril growth axis, implied by mass-per-length data and the observation of a single set of C-13 NMR signals. Comparison with a previously reported model for A beta(1-40) fibrils with a qualitatively different, striated ribbon morphology reveals the molecular basis for polymorphism. At the molecular level, the 2 A beta(1-40) fibril morphologies differ in overall symmetry (twofold vs. threefold), the conformation of non-beta-strand segments, and certain quaternary contacts. Both morphologies contain in-register parallel beta-sheets, constructed from nearly the same beta-strand segments. Because twisted and striated ribbon morphologies are also observed for amyloid fibrils formed by other polypeptides, such as the amylin peptide associated with type 2 diabetes, these structural variations may have general implications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available