4.8 Article

Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0803557105

Keywords

immunoconjugates; lymphoma cells; monoclonal antibodies; nanotechnology; near infrared light

Funding

  1. NCCIH NIH HHS [R21 AT001326] Funding Source: Medline

Ask authors/readers for more resources

Single-walled carbon nanotubes (CNTs) emit heat when they absorb energy from near-infrared (NIR) light. Tissue is relatively transparent to NIR, which suggests that targeting CNTs to tumor cells, followed by noninvasive exposure to NIR light, will ablate tumors within the range of NIR. In this study, we demonstrate the specific binding of anti body-coupled CNTs to tumor cells in vitro, followed by their highly specific ablation with NIR light. Biotinylated polar lipids were used to prepare stable, biocompatible, noncytotoxic CNT dispersions that were then attached to one of two different neutralite avidin-derivatized mAbs directed against either human CD22 or CD25. CD22(+)CD25(-) Daudi cells bound only CNTs coupled to the anti-CD22 mAb; CD22(-)CD25(+) activated peripheral blood mononuclear cells bound only to the CNTs coupled to the anti-CD25 mAb. Most importantly, only the specifically targeted cells were killed after exposure to NIR light.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available