4.8 Article

Resolving cadherin interactions and binding cooperativity at the single-molecule level

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0811350106

Keywords

atomic force microscope; cell adhesion; cis dimer; fluorescence resonance energy transfer; trans binding

Funding

  1. Bio- X Program at Stanford University
  2. National Science Foundation
  3. National Aeronautics and Space Administration
  4. Air Force Office of Scientific Research
  5. National Institutes of Health [RO1 GM35527]

Ask authors/readers for more resources

The cadherin family of Ca2+-dependent cell adhesion proteins are critical for the morphogenesis and functional organization of tissues in multicellular organisms, but the molecular interactions between cadherins that are at the core of cell-cell adhesion are a matter of considerable debate. A widely-accepted model is that cadherins adhere in 3 stages. First, the functional unit of cadherin adhesion is a cis dimer formed by the binding of the extracellular regions of 2 cadherins on the same cell surface. Second, formation of low-affinity trans interactions between cadherin cis dimers on opposing cell surfaces initiates cell-cell adhesion. Third, lateral clustering of cadherins cooperatively strengthens intercellular adhesion. Evidence of these cadherin binding states during adhesion is, however, contradictory, and evidence for cooperativity is lacking. We used single-molecule structural (fluorescence resonance energy transfer) and functional (atomic force microscopy) assays to demonstrate directly that cadherin monomers interact via their N-terminal EC1 domain to form trans adhesive complexes. We could not detect the formation of cadherin cis dimers, but found that increasing the density of cadherin monomers cooperatively increased the probability of trans adhesive binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available