4.8 Article

Imaging quantum confinement with optical and POWER (perturbations observed with enhanced resolution) NMR

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0806563106

Keywords

GaAs; hyperfine or Knight shift; Stark effect; H-band photoluminescence

Funding

  1. National Science Foundation [CHE-9612226]

Ask authors/readers for more resources

The nanoscale distributions of electron density and electric fields in GaAs semiconductor devices are displayed with NMR experiments. The spectra are sensitive to the changes to the nuclear-spin Hamiltonian that are induced by perturbations delivered in synchrony with a line-narrowing pulse sequence. This POWER (perturbations observed with enhanced resolution) method enhanced resolution up to 10(3)-fold, revealing the distribution of perturbations over nuclear sites. Combining this method with optical NMR, we imaged quantum-confined electron density in an individual AlGaAs/GaAs heterojunction via hyperfine shifts. Fits to the coherent evolution and relaxation of nuclei within a hydrogenic state established one-to-one correspondence of radial position to frequency. Further experiments displayed the distribution of photoinduced electric field within the same states via a quadrupolar Stark effect. These unprecedented high-resolution distributions discriminate between competing models for the luminescence and support an excitonic state, perturbed by the interface, as the dominant source of the magnetically modulated luminescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available