4.8 Article

Molecular mechanism of pH sensing in KcsA potassium channels

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0800873105

Keywords

ion channel; proton sensor; salt bridge network; pH gating

Funding

  1. NIGMS NIH HHS [R01 GM077560] Funding Source: Medline

Ask authors/readers for more resources

The bacterial potassium channel KcsA is gated by high concentrations of intracellular protons, allowing the channel to open at pH < 5.5. Despite prior attempts to determine the mechanism responsible for pH gating, the proton sensor has remained elusive. We have constructed a KcsA channel mutant that remains open up to pH 9.0 by replacing key ionizable residues from the N and C termini of KcsA with residues mimicking their protonated counterparts with respect to charge. A series of individual and combined mutations were investigated by using single-channel recordings in lipid bilayers. We propose that these residues are the proton-binding sites and at neutral pH they form a complex network of inter- and intrasubunit salt bridges and hydrogen bonds near the bundle crossing that greatly stabilize the closed state. In our model, these residues change their ionization state at acidic pH, thereby disrupting this network, modifying the electrostatic landscape near the channel gate, and favoring channel opening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available