4.8 Article

Role of catalysts in dehydrogenation of MgH2 nanoclusters

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0711743105

Keywords

hydrogen storage; transition metals; diffusion; catalysis

Ask authors/readers for more resources

A fundamental understanding of the role of catalysts in dehydrogenation of MgH2 nanoclusters is provided by carrying out first-principles calculations based on density functional theory. It is shown that the transition metal atoms Ti, V, Fe, and Ni not only lower desorption energies significantly but also continue to attract at least four hydrogen atoms even when the total hydrogen content of the cluster decreases. In particular, Fe is found to migrate from the surface sites to the interior sites during the dehydrogenation process, releasing more hydrogen as it diffuses This diffusion mechanism may account for the fact that a small amount of catalysts is sufficient to improve the kinetics of MgH2. which is essential for the use of this material for hydrogen storage in fuel-cell applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available