4.8 Article

Fractalization drives crystalline states in a frustrated spin system

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0804320105

Keywords

Hofstadter butterfly; magnetization plateaus; quantum magnet

Funding

  1. National Science Foundation Division of Materials Research
  2. Department of Energy
  3. State of Florida
  4. Natural Sciences and Engineering Research Council
  5. Canadian Institute for Advanced Research
  6. Spanish Ministerio de Educacion y Ciencia
  7. Trinity College (Cambridge)
  8. Institute for Complex Adaptive Matter

Ask authors/readers for more resources

The fractalized Hofstadter butterfly energy spectrum predicted for magnetically confined fermions diffracted by a crystal lattice has remained beyond the reach of laboratory-accessible magnetic fields. We find the geometrically frustrated spin system SrCu2(BO3)(2) to provide a sterling demonstration of a system in which bosons confined by a magnetic and lattice potential mimic the behavior of fermions in the extreme quantum limit, giving rise to a sequence of plateaus at all magnetization m(z)/m(sat) =1/q ratios 9 >= q >= 2 and p/q =2/9 (m(sat) is the saturation magnetization) in magnetic fields up to 85 T and temperatures down to 29 mK, within the sequence of previously identified plateaus at 1/8, 1/4, and 1/3 of the saturated magnetization. We identify this hierarchy of plateaus as a consequence of confined bosons in SrCu2(BO3)(2) mimicking the high magnetic field fractalization predicted by the Hofstadter butterfly for fermionic systems. Such an experimental realization of the Hofstadter problem for interacting fermions has not been previously achieved in real materials, given the unachievably high magnetic flux densities or large lattice periods required. By a theoretical treatment that includes short-range repulsion in the Hofstadter treatment, stripe-like spin density-modulated phases are revealed in SrCu2(BO3)(2) as emergent from a fluidic fractal spectrum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available