4.8 Article

H elimination and metastable lifetimes in the UV photoexcitation of diacetylene

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0801180105

Keywords

ion imaging; photochemistry; Titan

Funding

  1. National Science Foundation [CHE-0627854]

Ask authors/readers for more resources

We present an experimental investigation of the UV photochemistry of diacetylene under collisionless conditions. The H loss channel is studied using DC slice ion imaging with two-color reduced-Doppler detection at 243 nm and 212 nm. The photochemistry is further studied deep in the vacuum UV, that is, at Lyman-alpha(121.6 nm). Translational energy distributions for the H + C4H product arising from dissociation of C4H2 after excitation at 243, 212, and 121.6 nm show an isotropic angular distribution and characteristic translational energy profile suggesting statistical dissociation from the ground state or possibly from a low-lying triplet state. From these distributions, a two-photon dissociation process is inferred at 243 nm and 212 nm, whereas at 121.6 nm, a one-photon dissociation process prevails. The results are interpreted with the aid of ab initio calculations on the reaction pathways and statistical calculations of the dissociation rates and product branching. In a second series of experiments, nanosecond time-resolved phototionization measurements yield a direct determination of the lifetime of metastable triplet diacetylene under collisionless conditions, as well as its dependence on excitation energy. The observed submicrosecond lifetimes suggest that reactions of metastable diacetylene are likely to be less important in Titan's atmosphere than previously believed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available