4.8 Article

Neutral evolution in paroxysmal nocturnal hemoglobinuria

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0802749105

Keywords

mathematical modeling; stem cells; stochastic dynamics; hematopoiesis; mutation

Funding

  1. Mayo Foundation
  2. FCT-Portugal
  3. Harvard University

Ask authors/readers for more resources

Paroxysmal nocturnal hemoglobinuria is an acquired hematopoietic stem cell (HSC) disorder characterized by the partial or complete deficiency of glycosyl-phosphatidylinositol (GPI)-linked membrane proteins, which leads to intravascular hemolysis. A loss of function mutation in the PIG-A gene, required for GPI biosynthesis, explains how the deficiency of many membrane proteins can result from a single genetic event. However, to date the mechanism of expansion of the GPI(-) clone has not been fully understood. Two hypotheses have been proposed: A selective advantage of GPI(-) cells because of a second mutation or a conditional growth advantage of GPI(-) cells in the presence of an immune attack on normal (GPI(+)) HSCs. Here, we explore a third possibility, whereby the PNH clone does not have a selective advantage. Simulations in a large virtual population accurately reproduce the known incidence of the disease; and the fit is optimized when the number of stem cells is decreased, reflecting a component of bone marrow failure in PNH. The model also accounts for the occurrence of spontaneous cure in PNH, consequent on clonal extinction. Thus, a clonal advantage may not be always necessary to explain clonal expansion in PNH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available