4.8 Article

CD4 cell-secreted, posttranslationally modified cytokine GIF suppresses Th2 responses by inhibiting the initiation of IL-4 production

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0810035105

Keywords

allergy; immunosuppression; posttranslational modification; cysteinylation

Funding

  1. National Institutes of Health [R01 AI056211]

Ask authors/readers for more resources

T helper 2 (Th2) cells are critical to the induction of IgE antibody and allergic inflammation, but how the pathological pathways are controlled in nonallergic individuals remains unclear. Here we report that glycosylation-inhibiting factor (GIF) suppresses Th2 effector generation. GIF is a cytokine encoded by the same gene that codes for macrophage migration inhibitory factor (MIF). GIF-deficient mice demonstrated enhanced T-dependent antibody formation especially of IgE isotype and allergic airway inflammation with the generation of regulatory T cells unaffected. GIF-deficient macrophages and dendritic cells revealed normal responsiveness to toll-like receptor (TLR) ligands. GIF undergoes a unique posttranslational modification, cysteinylation. The modified GIF, mainly secreted by activated T cells derived from CD4(+)CD25(-) cells, inhibited IL-4 production by the same cells whereas the unmodified GIF showed no effect. Bone marrow chimera experiment demonstrated that T cell-derived GIF suppressed the generation of Th effectors that secrete IL-4. During the first 24 h of CD3/CD28 stimulation in vitro, GIF secreted from naive CD4 cells acted on the same cells, maintained nuclear factor of activated T cells (NFAT)c2 in the nucleus, and repressed IL-4 mRNA levels. Thus, GIF represents a self-regulatory mechanism of Th2 cell generation from naOve CD4 cells, in which the posttranslational modification plays a crucial role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available