4.8 Article

Conserved residues modulate copper release in human copper chaperone Atox1

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0802928105

Keywords

Wilson disease protein; Menkes disease protein; stopped-flow mixing; Cu-binding mechanism; Cu transfer

Funding

  1. NHLBI NIH HHS [R01 HL047020] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM035649] Funding Source: Medline

Ask authors/readers for more resources

It is unclear how the human copper (Cu) chaperone Atox1 delivers Cu to metal-binding domains of Wilson and Menkes disease proteins in the cytoplasm. To begin to address this problem, we have characterized Cu(I) release from wild-type Atox1 and two point mutants (Met(10)Ala and Lys(60)Ala). The dynamics of Cu(I) displacement from holo-Atox1 were measured by using the Cu(I) chelator bicinchonic acid (BCA) as a metal acceptor. BCA removes Cu(I) from Atox1 in a three-step process involving the bimolecular formation of an initial Atox1-Cu-BCA complex followed by dissociation of Atox1 and the binding of a second BCA to generate apo-Atox1 and Cu-BCA(2). Both mutants lose Cu(I) more readily than wild-type Atox1 because of more rapid and facile displacement of the protein from the Atox1-Cu-BCA intermediate by the second BCA. Remarkably, Cu(I) uptake from solution by BCA is much slower than the transfer from holo-Atox1, presumably because of slow dissociation of DTT-Cu complexes. These results suggest that Cu chaperones play a key role in making Cu(I) rapidly accessible to substrates and that the activated protein-metal-chelator complex may kinetically mimic the ternary chaperone-metal-target complex involved in Cu(I) transfer in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available