4.8 Article

Receptor noise limitations on chemotactic sensing

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0804702105

Keywords

chemotaxis; motility

Funding

  1. National Institutes of Health [P01 GM078586]

Ask authors/readers for more resources

Chemotactic eukaryotic cells are able to detect chemoattractant gradients that are both shallow and have a low background concentration. Under these conditions, the noise in the number of bound receptors can be significant and needs to be taken into account in determining the directional sensing process. Here, we quantify numerically the number of bound receptors on the membrane of a disk-shaped cell by using a numerical Monte Carlo tool. The obtained time traces of the receptor occupancy can be used as inputs for any directional sensing model. We investigate the response of the local excitation global inhibition model and a recently developed balanced inactivation model. We determine a measure for the motility of the cell for each model, based on the relevant output variable, as a function of experimental parameters, resulting in several experimentally testable predictions. Furthermore, we show that these two models behave in a qualitatively different fashion when the background concentration is varied. Thus, to properly characterize the sensitivity of cells to receptor occupancy, it is not sufficient to examine the input signal. Rather, one needs to take into account the response of the second messenger pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available