4.8 Article

Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0710858105

Keywords

depression; neurogenesis; antidepressant; neurotrophic factor

Funding

  1. U.S. Public Health Service [MH25642, MH45481]
  2. Connecticut Mental Health Center
  3. Uehara Memorial Foundation

Ask authors/readers for more resources

All classes of antidepressants increase hippocampal cell proliferation and neurogenesis, which contributes, in part, to the behavioral actions of these treatments. Among antidepressant treatments, electroconvulsive seizure (ECS) is the most robust stimulator of hippocampal cell proliferation and the most efficacious treatment for depression, but the cellular mechanisms underlying the actions of ECS are unknown. To address this question, we investigated the effect of ECS on proliferation of neural stem-like and/or progenitor cells in the subgranular zone of rat dentate gyrus. We define the neural differentiation cascade from stem-like cells to early neural progenitors (also referred to as quiescent and amplifying neural progenitors, respectively) by co-expression of selective cellular and mitotic activity markers. We find that at an early mitotic phase ECS increases the proliferation of quiescent progenitors and then at a later phase increases the proliferation of amplifying progenitors. We further demonstrate that vascular endothelial growth factor (VEGF) signaling is necessary for ECS induction of quiescent neural progenitor cell proliferation and is sufficient to produce this effect. These findings demonstrate that ECS and subsequent induction of VEGF stimulates the proliferation of neural stem-like cells and neural progenitor cells, thereby accounting for the superior neurogenic actions of ECS compared with chemical antidepressants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available