4.8 Article

Transition state for protein-DNA recognition

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0802383105

Keywords

direct sequence readout; kinetics; papillomavirus E2 protein; phi-value analysis; binding

Ask authors/readers for more resources

We describe the formation of protein-DNA contacts in the two-state route for DNA sequence recognition by a transcriptional regulator. Surprisingly, direct sequence readout establishes in the transition state and constitutes the bottleneck of complex formation. Although a few nonspecific ionic interactions are formed at this early stage, they mainly play a stabilizing role in the final consolidated complex. The interface is fairly plastic in the transition state, likely because of a high level of hydration. The overall picture of this two-state route largely agrees with a smooth energy landscape for binding that speeds up DNA recognition. This direct two-state route differs from the parallel multistep pathway described for this system, which involves nonspecific contacts and at least two intermediate species that must involve substantial conformational rearrangement in either or both macromolecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available