4.3 Article

Energy-efficient train control in urban rail transit systems

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954409713515648

Keywords

Automatic train operation; target speed; energy-efficient operation; train control

Funding

  1. Fundamental Research Funds for the Central Universities [2013YJS019]
  2. Beijing Municipal Science and Technology Commission [D131100004113002]

Ask authors/readers for more resources

With the latest developments in technology, the Automatic Train Operation (ATO) has been widely used in urban rail transit systems over the past decade. The control process used by the ATO system generally consists of two levels. The high-level control calculates the target speed according to the moving authority of the trains and the low-level control implements precise tracking on the target speed by controlling the traction and braking force. Most of the literature has only focused on the high-level control to optimize the train trajectory, but did not practically combine the low-level control of the ATO system. When the optimized trajectory is applied as the target speed, it will cause frequent switches between acceleration and braking for precise tracking and waste a lot of energy. Hence, this previous research may not be applied to practical ATO systems. In this paper, a numerical algorithm is proposed to solve the energy-ecient train control problem with a given trip time by distributing the reverse time to dierent segments. Then a method is presented for optimization of target speeds based on the ATO control principles, which guides the train to output optimized control sequences. The proposed approach is capable of avoiding the unnecessary switching and then eciently reduces the traction energy consumption of the train switches. Furthermore, case studies have been undertaken based on infrastructure data from the Beijing Yizhuang rail transit line, and the simulation results illustrate that the proposed approach results in good performance with regards to energy saving.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available