4.7 Article

APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells

Journal

CELL DEATH & DISEASE
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2015.143

Keywords

-

Categories

Ask authors/readers for more resources

Two main causes of platinum resistance are mutation in the tumor suppressor gene TP53 and drug-induced increase in intracellular glutathione concentration. Mutations in TP53 occur in about 50% of human tumors. APR-246 (PRIMA-1(MET)) is the first clinical-stage compound that reactivates mutant p53 and induces apoptosis. APR-246 is a prodrug that is converted to the active compound methylene quinuclidinone (MQ), a Michael acceptor that binds to cysteine residues in mutant p53 and restores its wildtype conformation. Here, we show that MQ also binds to cysteine in glutathione, thus decreasing intracellular free glutathione concentration. We also show that treatment with APR-246 completely restores the cisplatin and doxorubicin sensitivity to p53-mutant drug-resistant ovarian cancer cells. We propose that this unique ability of APR-246/MQ to bind to cysteines in both mutant p53 and glutathione has a key role in the resensitization as well as in the outstanding synergistic effects observed with APR-246 in combination with platinum compounds in ovarian cancer cell lines and primary cancer cells. However, MQ binding to cysteines in other targets, for example, thioredoxin reductase, may contribute as well. Strong synergy was also observed with the DNA-damaging drugs doxorubicin and gemcitabine, while additive effects were found with the taxane docetaxel. Our results provide a strong rationale for the ongoing clinical study with APR-246 in combination with platinum-based therapy in patients with p53-mutant recurrent high-grade serous (HGS) ovarian cancer. More than 96% of these patients carry TP53 mutations. Combined treatment with APR-246 and platinum or other DNA-damaging drugs could allow dramatically improved therapy of a wide range of therapy refractory p53 mutant tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available