4.5 Article

Tool wear and hole quality when single-shot drilling of metallic-composite stacks with diamond-coated tools

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954405413517388

Keywords

Ti/carbon fibre-reinforced plastic; Al stacks; drilling; diamond coatings; tool life; failure modes

Funding

  1. GKN Aerospace
  2. Seco Tools
  3. Element Six Ltd

Ask authors/readers for more resources

This article details experimental work performed to evaluate the effects of varying feed rate (0.08 and 0.15 mm/rev) and tool coatings (diamond-like carbon and chemical vapour-deposited diamond) on tool wear modes and hole quality when drilling 30-mm-thick Ti-6Al-4V/carbon fibre-reinforced plastic/Al-7050 stacks in a single-shot operation. At a feed rate of 0.08 mm/rev, the diametrical accuracy of holes produced by both the chemical vapour-deposited diamond and diamond-like carbon-coated drills (6.38 mm diameter) was comparable within a tolerance of +/- 0.04 mm even after 70 holes. However, in terms of cylindricity, holes machined with chemical vapour-deposited diamond were significantly better than those produced using the diamond-like carbon-coated drills by a factor of approximate to 2 (65.7 vs 140.6 mu m). A similar trend was also observed for hole out of roundness. Burr height at hole entry locations (Ti layer) ranged from approximate to 0.03 to 0.08 mm for all trials undertaken at the lower feed rate level; however, the diamond-like carbon-coated drills generated exit burrs which were approximate to 4 times larger than their chemical vapour-deposited diamond-coated counterparts. Subsequent wear analysis showed that diamond-like carbon-coated drills operating at 0.08 mm/rev typically exhibited progressive abrasion, workpiece adhesion and chipping leading to fracture of the tool corner, while fracture due to fatigue was prevalent in tests carried out at the high feed rate level. In contrast, poor adhesion of the chemical vapour-deposited diamond coating to the carbide substrate led to premature flaking, severe chipping and fracture of the drill cutting and chisel edge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available