4.7 Article

NFAT4-dependent miR-324-5p regulates mitochondrial morphology and cardiomyocyte cell death by targeting Mtfr1

Journal

CELL DEATH & DISEASE
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2015.348

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [81270160, 81470522]
  2. Beijing Municipal Natural Science Foundation [7142103]

Ask authors/readers for more resources

Emerging evidence suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction and heart failure. However, the molecular components regulating mitochondrial network in heart remain largely unidentified. Here we report that NFAT4, miR-324-5p and mitochondrial fission regulator 1 (Mtfr1) function in one signaling axis that regulates mitochondrial morphology and cardiomyocyte cell death. Knocking down Mtfr1 suppresses mitochondrial fission, apoptosis and myocardial infarction. Mtfr1 is a direct target of miR-324-5p, and miR-324-5p attenuates mitochondrial fission, cardiomyocyte apoptosis and myocardial infarction by suppressing Mtfr1 translation. Finally, we show that transcription factor NFAT4 inhibits miR-324-5p expression. Knockdown of NFAT4 suppresses mitochondrial fission and protects cardiomyocyte from apoptosis and myocardial infarction. Our study defines the NFAT4/miR-324-5p/Mtfr1 axis, which participates in the regulation of mitochondrial fission and cardiomyocyte apoptosis, and suggests potential new treatment avenues for cardiac diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available