4.7 Article

Capacity Trends and Limits of Optical Communication Networks

Journal

PROCEEDINGS OF THE IEEE
Volume 100, Issue 5, Pages 1035-1055

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPROC.2012.2182970

Keywords

Channel capacity; communication system traffic; fiber nonlinear optics; multiple-input-multiple-output (MIMO); optical fiber communication; optical networks

Ask authors/readers for more resources

Since the first deployments of fiber-optic communication systems three decades ago, the capacity carried by a single-mode optical fiber has increased by a staggering 10 000 times. Most of the growth occurred in the first two decades with growth slowing to ten times in the last decade. Over the same three decades, network traffic has increased by a much smaller factor of 100, but with most of the growth occurring in the last few years, when data started dominating network traffic. At the current growth rate, the next factor of 100 in network traffic growth will occur within a decade. The large difference in growth rates between the delivered fiber capacity and the traffic demand is expected to create a capacity shortage within a decade. The first part of the paper recounts the history of traffic and capacity growth and extrapolations for the future. The second part looks into the technological challenges of growing the capacity of single-mode fibers by presenting a capacity limit estimate of standard and advanced single-mode optical fibers. The third part presents elementary capacity considerations for transmission over multiple transmission modes and how it compares to a single-mode transmission. Finally, the last part of the paper discusses fibers supporting multiple spatial modes, including multimode and multicore fibers, and the role of digital processing techniques. Spatial multiplexing in fibers is expected to enable system capacity growth to match traffic growth in the next decades.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available