4.6 Article

A new artificial neural network-based response surface method for structural reliability analysis

Journal

PROBABILISTIC ENGINEERING MECHANICS
Volume 23, Issue 1, Pages 51-63

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.probengmech.2007.10.003

Keywords

structural reliability; response surface method; artificial neural network; uniform design method; failure probability; limit state function

Ask authors/readers for more resources

This paper presents a new artificial neural network-(ANN)based response surface method in conjunction with the uniform design method for predicting failure probability of structures. The method involves the selection of training datasets for establishing an ANN model by the uniform design method, approximation of the limit state function by the trained ANN model and estimation of the failure probability using first-order reliability method (FORM). In the proposed method, the use of the uniform design method can improve the quality of the selected training datasets, leading to a better performance of the ANN model. As a result, the ANN dramatically reduces the number of required trained datasets, and shows a good ability to approximate the limit state function and then provides a less rigorous formulation in the context of FORM. Results of three numerical examples involving both structural and non-structural problems indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure. Compared with the conventional ANN-based response surface method, the proposed method is much more economical to achieve reasonable accuracy when dealing with problems where closed-form failure functions are not available or the estimated failure probability is extremely small. Finally, several important parameters in the proposed method are discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available