4.5 Article

An LDV-based methodology for measuring axial and radial error motions when using miniature ultra-high-speed (UHS) micromachining spindles

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2012.08.001

Keywords

Ultra-high-speed spindles; Hybrid ceramic bearing spindles; Spindle metrology; Micro-manufacturing; Runout; Micromachining

Funding

  1. National Science Foundation [CMMI-0728157]

Ask authors/readers for more resources

This paper presents a laser Doppler vibrometry-based methodology for measurement of axial and radial error motions when using miniature ultra-high-speed (UHS) spindles used for micromachining applications. The new methodology measures three-dimensional displacements from the surface of a custom-fabricated sphere-on-stem precision artifact using three mutually orthogonal laser beams. A precision alignment technique is developed to configure the three laser beams mutually orthogonal to one another. An infra-red sensor is used to provide a reference for the rotational angle of the spindle. The axial and radial motion data measured at operational speeds is then post-processed to obtain the synchronous and asynchronous components of the error motions in both directions. The presented approach enables obtaining error motions along both fixed-sensitive and rotating-sensitive directions. The methodology is then demonstrated by measuring axial and radial error motions when using a miniature ultra-high-speed spindle at four different speeds. Analysis of the measured data indicated the significant effect of spindle speed on the error motions along both fixed-sensitive and the rotating-sensitive directions. Finally, an uncertainty analysis is presented to quantify the overall combined uncertainty on the error measurements when using the new methodology. (c) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available