4.6 Article

The application of small unmanned aerial systems for precision agriculture: a review

Journal

PRECISION AGRICULTURE
Volume 13, Issue 6, Pages 693-712

Publisher

SPRINGER
DOI: 10.1007/s11119-012-9274-5

Keywords

Low altitude remote sensing; Unmanned aerial systems (UAS); UAS platforms; UAS cameras; UAS aviation regulations; UAS limitations; Farmer participation

Funding

  1. Northern Ontario Heritage Fund Corporation of Canada [920161]

Ask authors/readers for more resources

Precision agriculture (PA) is the application of geospatial techniques and sensors (e.g., geographic information systems, remote sensing, GPS) to identify variations in the field and to deal with them using alternative strategies. In particular, high-resolution satellite imagery is now more commonly used to study these variations for crop and soil conditions. However, the availability and the often prohibitive costs of such imagery would suggest an alternative product for this particular application in PA. Specifically, images taken by low altitude remote sensing platforms, or small unmanned aerial systems (UAS), are shown to be a potential alternative given their low cost of operation in environmental monitoring, high spatial and temporal resolution, and their high flexibility in image acquisition programming. Not surprisingly, there have been several recent studies in the application of UAS imagery for PA. The results of these studies would indicate that, to provide a reliable end product to farmers, advances in platform design, production, standardization of image georeferencing and mosaicing, and information extraction workflow are required. Moreover, it is suggested that such endeavors should involve the farmer, particularly in the process of field design, image acquisition, image interpretation and analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available