3.9 Article

Research on a New Variotherm Injection Molding Technology and its Application on the Molding of a Large LCD Panel

Journal

POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING
Volume 48, Issue 7, Pages 671-681

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/03602550902824549

Keywords

Dynamic mold temperature control; LCD panel; Mold temperature response; No weld mark; Steam heating; Variotherm injection molding

Funding

  1. National Science & Technology Pillar Program [2006BAF02A05]
  2. Shandong Province High Technology Innovation [20082210]
  3. New Century Excellent Talents in University [NCET-08-0337]

Ask authors/readers for more resources

The polymer injection products produced by using the current injection molding method usually have many defects, such as short shot, jetting, sink mark, flow mark, weld mark, and floating fibers. These defects have to be eliminated by using post-processing processes such as spraying and coating, which will cause environment pollution and waste in time, materials, energy and labor. These problems can be solved effectively by using a new injection method, named as variotherm injection molding or rapid heat cycle molding (RHCM). In this paper, a new type of dynamic mold temperature control system using steam as heating medium and cooling water as coolant was developed for variotherm injection molding. The injection mold is heated to a temperature higher than the glass transition temperature of the resin, and keeps this temperature in the polymer melt filling stage. To evaluate the efficiency of steam heating and coolant cooling, the mold surface temperature response during the heating stage and the polymer melt temperature response during the cooling stage were investigated by numerical thermal analysis. During heating, the mold surface temperature can be raised up rapidly with an average heating speed of 5.4 degrees C/s and finally reaches an equilibrium temperature after an effective heating time of 40 s. It takes about 34.5 s to cool down the shaped polymer melt to the ejection temperature for demolding. The effect of main parameters such as mold structure, material of mold insert on heating/cooling efficiency and surface temperature uniformity were also discussed based on simulation results. Finally, a variotherm injection production line for 46-inch LCD panel was constructed. The test production results demonstrate that the mold temperature control system developed in this study can dynamically and efficiently control mold surface temperature without increasing molding cycle time. With this new variotherm injection molding technology, the defects on LCD panel surface occurring in conventional injection molding process, such as short shot, jetting, sink mark, flow mark, weld mark, and floating fibers were eliminated effectively. The surface gloss of the panel was improved and the secondary operations, such as sanding and coating, are not needed anymore.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available