4.5 Article

The Compression Flow as a Measure to Estimate the Brain Connectivity Changes in Resting State fMRI and 18FDG-PET Alzheimer's Disease Connectomes

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fncom.2015.00148

Keywords

18FDG-PET; RS-fMRI; Alzheimer's disease; voxelwise functional connectivity; functional integration

Funding

  1. Lombardy Region [17125]
  2. National Research Council of Italy [17125]
  3. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  4. DOD ADNI (Department of Defense) [W8EXW14-12-2-0012]
  5. National Institute on Aging
  6. National Institute of Biomedical Imaging and Bioengineering
  7. AbbVie
  8. Alzheimer's Association
  9. Alzheimer's Drug Discovery Foundation
  10. Araclon Biotech
  11. BioClinica, Inc.
  12. Biogen
  13. Bristol-Myers Squibb Company
  14. CereSpir, Inc.
  15. Eisai Inc.
  16. Elan Pharmaceuticals, Inc.
  17. Eli Lilly and Company
  18. Euroimmun
  19. F. Hoffmann-La Roche Ltd
  20. Genentech, Inc.
  21. Fujirebio
  22. GE Healthcare
  23. IXICO Ltd.
  24. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  25. Johnson & Johnson Pharmaceutical Research & Development LLC.
  26. Lumosity
  27. Lundbeck
  28. Merck Co., Inc.
  29. Meso Scale Diagnostics
  30. NeuroRx Research
  31. Neurotrack Technologies
  32. Novartis Pharmaceuticals Corporation
  33. Pfizer Inc.
  34. Piramal Imaging
  35. Servier
  36. Takeda Pharmaceutical Company
  37. Transition Therapeutics
  38. Canadian Institutes of Health Research
  39. Northern California Institute for Research and Education

Ask authors/readers for more resources

The human brain appears organized in compartments characterized by seemingly specific functional purposes on many spatial scales. A complementary functional state binds information from specialized districts to return what is called integrated information. These fundamental network dynamics undergoes to severe disarrays in diverse degenerative conditions such as Alzheimer's Diseases (AD). The AD represents a multifarious syndrome characterized by structural, functional, and metabolic landmarks. In particular, in the early stages of AD, adaptive functional modifications of the brain networks mislead initial diagnoses because cognitive abilities may result indiscernible from normal subjects. As a matter of facts, current measures of functional integration fail to catch significant differences among normal, mild cognitive impairment (MCI) and even AD subjects. The aim of this work is to introduce a new topological feature called Compression Flow (CF) to finely estimate the extent of the functional integration in the brain networks. The method uses a Monte Carlo-like estimation of the information integration flows returning the compression ratio between the size of the injected information and the size of the condensed information within the network. We analyzed the resting state connectomes of 75 subjects of the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI) repository. Our analyses are focused on the 18FGD-PET and functional MRI (fMRI) acquisitions in several clinical screening conditions. Results indicated that CF effectively discriminate MCI, AD and normal subjects by showing a significant decrease of the functional integration in the AD and MCI brain connectomes. This result did not emerge by using a set of common complex network statistics. Furthermore, CF was best correlated with individual clinical scoring scales. In conclusion, we presented a novel measure to quantify the functional integration that resulted efficient to discriminate different stages of dementia and to track the individual progression of the impairments prospecting a proficient usage in a wide range of pathophysiological and physiological studies as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available