4.4 Review

The synthesis of copolymers, blends and composites based on poly(butylene succinate)

Journal

POLYMER JOURNAL
Volume 44, Issue 12, Pages 1179-1190

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/pj.2012.157

Keywords

biodegradable polymer; clay; enzymatic hydrolysis; ionomer; nanocomposites; TS-1 zeolite

Ask authors/readers for more resources

Poly(butylene succinate) (PBS) is one of the most available environmentally degradable polymers used in industrial applications. Biodegradable polyesters including PBS have low thermal stability, poor mechanical properties and slow crystallization rates. For this reason, many researchers have investigated PBS composites, especially nanocomposites with functional inorganic materials, to identify other advanced properties. We used two inorganic materials to investigate how nanoparticles could be dispersed in a PBS matrix and to identify the properties that could be advanced by fabricating well-dispersed PBS nanocomposites. Clay and zeolite were used for the nano components because they are well known and widely used inorganic materials in polymer-inorganic nanocomposites. The most challenging problem when fabricating the clay-polymer nanocomposite has been how to separate the clay layers in the composite to overcome the very strong cohesive energies between the clay layers. Numerous studies have introduced modifiers into silicate layers to increase the basal space and facilitate easier polymer chain incorporation. We introduce a urethane group on a clay surface to develop physically enhanced PBS/montmorillonite (MMT) nanocomposites. A series of PBS-based ionomers are synthesized by two-step polycondensation. This study focuses on the effect of the ionic group on dynamic mechanical properties, melt rheology, crystallization behavior and enzymatic hydrolysis. Polymer Journal (2012) 44, 1179-1190; doi:10.1038/pj.2012.157; published online 19 September 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available