4.5 Article

Fabrication and characterization of electrospun fibrous nanocomposite scaffolds based on poly(lactide-co-glycolide)/poly(vinyl alcohol) blends

Journal

POLYMER INTERNATIONAL
Volume 59, Issue 7, Pages 901-909

Publisher

WILEY
DOI: 10.1002/pi.2804

Keywords

tissue engineering; electrospun; fibrous scaffold; nanocomposite

Funding

  1. Tarbiat Modares University
  2. President Office, Nanotechnology Committee

Ask authors/readers for more resources

Tissue engineering involves the fabrication of three-dimensional scaffolds to support cellular in-growth and proliferation. Ideally, the scaffolds should be similar to the native extracellular matrix (ECM). Electrospun polymer nanofibrous scaffolds are appropriate candidates for ECM mimetic materials since they mimic the nanoscale properties of ECM. Electrospun polymer nanocomposites based on poly(lactide-co-glycolide) (PLGA)/poly(vinyl alcohol) (PVA) and organically modified montmorillonite (OMMT) were prepared by a solution intercalation technique followed by electrospinning. The morphology of fibrous scaffolds based on these nanocomposites was investigated using scanning electron microscopy. The scaffolds showed highly porous structure within the nanofibres of diameters ranging from 400 to 700 nm. X-ray diffractometry gave evidence of good dispersion of the OMMT in the blends with exfoliated morphology. Measurements of the water uptake and water contact angle of the fibrous scaffolds indicated significant improvement in the hydrophilicity of the scaffolds. Evaluations of the mechanical properties and unrestricted somatic stem cell culture of the electrospun fibrous nanocomposite scaffolds revealed that the PLGA90/PVA10/1.5% OMMT and PLGA90/PVA10/3% OMMT samples are the most useful from the tissue engineering application viewpoint. (C) 2010 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available