4.5 Article

Preparation and characterization of styrene/styryl-polyhedral oligomeric silsesquioxane hybrid copolymers

Journal

POLYMER INTERNATIONAL
Volume 57, Issue 12, Pages 1351-1356

Publisher

WILEY
DOI: 10.1002/pi.2480

Keywords

polystyrene; POSS; copolymerization; nanocomposites; metallocene catalysts

Funding

  1. Korea Science and Engineering Foundation [R01-2004-000-10563-0]

Ask authors/readers for more resources

BACKGROUND: Organic-inorganic nanocomposites were prepared by copolymerization of various monomers and polyhedral oligomeric silsesquioxane (POSS) derivatives. Preliminary results showed that styrene/styryl-POSS copolymers could be obtained using CpTiCl3 catalyst. In the work reported here, the copolymerization of styrene and styryl-substituted POSS was studied in detail for a more effective catalyst, Cp*TiCl3. RESULTS: The glass transition temperature (T-g) of the copolymers prepared increased with increasing POSS content. The degradation temperature (T-d) of the copolymers was 60 degrees C higher than that of syndiotactic polystyrene under nitrogen. Although the thermal properties were improved by incorporation of POSS, the catalytic activity decreased with POSS content. The racemic triad and syndiotactic index of the copolymers decreased with increasing POSS content. Gel permeation chromatograms of the copolymers exhibited multimodal distribution due to the presence of multi-active centres, which were formed by interaction of Ti with the POSS siloxane linkage. CONCLUSION: With the incorporation of POSS, the thermal properties of polystyrene were improved. The styrene/styryl-POSS copolymers are formed through the various active sites arising from the interactions of Ti with POSS. (C) 2008 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available