4.5 Article

Melt Rheological Investigation of Polylactide-Nanographite Platelets Biopolymer Composites

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 54, Issue 1, Pages 175-188

Publisher

WILEY
DOI: 10.1002/pen.23550

Keywords

-

Ask authors/readers for more resources

This study is an analytical investigation of processability of biopolymer-carbon based nanofiller composites primarily through rheological investigation of samples. The composites were fabricated via dry mixing and melt-blending of biodegradable polylactide (PLA) and nanographite platelets (NGP) in a Brabender twin screw extruder. A range of different nanofiller contents (1, 3, 5, 7, and 10 wt %) were studied for NGP containing composites. The morphology was studied with X-ray diffraction and transmission electron microscopy techniques and showed poor dispersion, with agglomerates, tactoids, and exfoliated layers present. Mechanical properties showed an optimum at 3 wt % filler. Results showed that the composites exhibited higher elastic and viscous moduli than neat PLA. The rheological percolation threshold predicted by changes in slope () as well as liquid-solid transition theory of samples was found around 3 wt % through the change from liquid-like behavior to pseudo-solid-like behavior at terminal region during dynamic oscillatory measurements. NGP nanofillers were found to enhance the viscoelastic and mechanical properties of PLA at low concentrations; however, an efficient dispersion of nanofillers within polymer by melt intercalation method of mixing was not achieved. POLYM. ENG. SCI., 54:175-188, 2014. (c) 2013 Society of Plastics Engineers

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available